
59

 5 Meta-Linguistic Abstraction, Types, and
Meta-Interpreters

Chapter

Objectives
A number of Prolog meta-predicates are presented, including:
 Atom
 clause
 univ (=..)
 call
The type system for Prolog:
 Programmer implements typing as needed
 Types as run time constraints rather than enforced at compile time
Unification and variable binding explained
Evaluation versus unification
 is versus =
 Difference lists demonstrated

Chapter
Contents

5.1 Meta-Predicates, Types, and Unification
5.2 Types in Prolog
5.3 Unification: The Engine for Variable Binding and Evaluation

 5.1 Meta-Interpreters, Types, and Unification

Meta-Logical
Predicates

In this chapter we first consider a set of powerful Prolog predicates, called
meta-predicates. These predicates take as their scope other predicates in the
Prolog environment. Thus they offer tools for building meta-interpreters,
interpreters in a language that are able to interpret specifications in that
language. An example will be to build a rule interpreter in Prolog, an
interpreter that can manipulate and interpret rule sets, specified in Prolog
syntax. These interpreters can also be used to query the user, offer
explanations of the interpreter’s decisions, implement multi-valued or
fuzzy logics, and run any Prolog code.

In Section 5.1 we introduce a useful set of meta-predicates. In Section 5.2
we discuss data typing for Prolog and describe how type constraints can
be added to a prolog system. An example of a typed relational database in
Prolog is given. Finally, in Section 5.3, we discuss unification and
demonstrate with difference lists how powerful this can be.

Meta-logical constructs extend the expressive power of any programming
environment. We refer to these predicates as meta because they are
designed to match, query, and manipulate other predicates that make up
the specifications of the problem domain. That is, they can be used to
reason about Prolog predicates rather than the terms or objects these
other predicates denote. We need meta-predicates in Prolog for (at least)
five reasons:

60 Part II: Programming in Prolog

 To determine the “type” of an expression;
 To add “type” constraints to logic programming applications;
 To build, take apart, and evaluate Prolog structures;
 To compare values of expressions;
 To convert predicates passed as data to executable code.

We have actually seen a number of meta-predicates already. In Chapter 2
we described how global structures, which are those that can be accessed
by the entire clause set, are entered into a Prolog program. The command
assert(C) adds the clause C to the current set of clauses. There are
dangers associated with programming with predicates such as assert
and retract. Because these predicates are able to create and remove
global structures, they can introduce side effects into the program, and
may cause other problems associated with poorly structured programs.
Yet, it is sometimes necessary to use global structures to draw on the
power of Prolog’s built-in database and pattern matching. We do this
when creating semantic nets and frames in a Prolog environment, as in
Section 2.4. We may also use global structures to describe new results as
they are found with a rule-based expert system shell, as in Section 6.2. We
want this information to be global so that other predicates (rules) may
access it when appropriate.

Other meta-predicates that are useful for manipulating representations
include:

var(X) succeeds only when X is an unbound variable.
nonvar(X) succeeds only when X is bound to a nonvariable term.

=.. creates a list from a predicate term.

For example, foo(a, b, c) =.. Y unifies Y with [foo, a, b,
c]. The head of the list Y is the predicate name, and its tail is the
predicate’s arguments. =.. also can be used to bind alternative variable
patterns, of course. Thus, if X =.. [foo, a, b, c] succeeds, then
X has the value foo(a, b, c).

 functor(A, B, C) succeeds with A a term whose principal
 functor has name B and arity C.

For example, functor(foo(a, b), X, Y) will succeed with
variables X = foo and Y = 2. functor(A, B, C) can also be used
with any of its arguments bound in order to produce the others, such as all
the terms with a certain name and/or arity.

clause(A, B) unifies B with the body of a clause whose head is A.

For example, if p(X) :- q(X) exists in the database, then
clause(p(a), Y) will succeed with Y = q(a). This is useful for
controlling rule chaining in an interpreter, as seen in Chapter 6.

any_predicate(…, X, …) :- X executes predicate X, the
 argument of any predicate.

Thus a predicate, here X, may be passed as a parameter and executed at
any desired time. call(X), where X is a clause, also succeeds with the
execution of predicate X.

 Chapter 5 Meta-Linguistic Abstraction 61

This short list of meta-logical predicates will be very important in building
and interpreting AI data structures. Because Prolog can manipulate its
own structures in a straightforward fashion, it is easy to implement
interpreters that modify the Prolog semantics, as we see next.

 5.2 Introduction: Logic-Based Representation Types in Prolog

 For a number of problem-solving applications, the unconstrained use of
unification can introduce unintended error. Prolog is an untyped language,
in that unification simply matches patterns, without restricting them
according to data type. For example, append(nil, 6, 6) can be
inferred from the definition of append, as we will see in Chapter 10.
Strongly typed languages such as Pascal have shown how type checking
helps programmers avoid these problems. Researchers have proposed
adding types to Prolog (Neves et al. 1986, Mycroft and O’Keefe 1984).

Typed data are particularly appropriate in a relational database (Neves et
al. 1986, Malpas 1987). The rules of logic can be used as constraints on the
data and the data can be typed to enforce consistent and meaningful
interpretation of the queries. Suppose that a department store database has
inventory, suppliers, supplier_inventory, and other
appropriate relations. We define a database as relations with named fields
that can be thought of as sets of tuples. For example, inventory might
consist of 4-tuples, where:

< Pname, Pnumber, Supplier, Weight > inventory

only when Supplier is the supplier name of an inventory item
numbered Pnumber that is called Pname and has weight Weight.
Suppose further:

< Supplier, Snumber, Status, Location > suppliers

only when Supplier is the name of a supplier numbered Snumber
who has status Status and lives in city Location. Suppose finally:

< Supplier, Pnumber, Cost, Department >
 supplier_inventory

only if Supplier is the name of a supplier of part number Pnumber in
the amount of Cost to department Department.

We may define Prolog rules that implement various queries and perform
type checking across these relationships. For instance, the query “are there
suppliers of part number 1 that live in London?” is given in Prolog as:

?- getsuppliers(Supplier,1, london).

The rule:
getsuppliers(Supplier, Pnumber, City) :-

 cktype(City, suppliers, city),

 suppliers(Supplier, _, _,City),

 cktype(Pnumber, inventory, number),

 supplier_inventory(Supplier, Pnumber, _, _),

 cktype(Supplier, inventory, name).

62 Part II: Programming in Prolog

implements this query and also enforces the appropriate constraints across
the tuples of the database. First the variables Pnumber and City are
bound when the query unifies with the head of the rule; the predicate
cktype tests that Supplier is an element of the set of suppliers, that
1 is a legitimate inventory number, and that london is a suppliers’ city.

We define cktype to take three arguments: a value, a relation name, and
a field name, and to check that each value is of the appropriate type for
that relation. For example, we may define lists of legal values for
Supplier, Pnumber, and City and enforce data typing by requiring
member checks of candidate values across these lists. Alternatively, we
may define logical constraints on possible values of a type; for example,
we may require that inventory numbers be less than 1000.

We should note the differences in type checking between standard
languages such as Pascal and Prolog. We might define a Pascal data type
for suppliers as:

type supplier = record

 sname: string;

 snumber: integer;

 status: boolean;

 location: string

 end

The Pascal programmer defines new types, here supplier, in terms of
already defined types, such as boolean or integer. When the
programmer uses variables of this type, the compiler automatically
enforces type constraints on their values.

In Prolog, we can represent the supplier relation as instances of the form:

supplier(sname(Supplier),

 snumber(Snumber),

 status(Status),

 location(Location)).

We then implement type checking by using rules such as
getsuppliers and cktype. The distinction between Pascal and
Prolog type checking is clear and important: the Pascal type declaration
tells the compiler the form for both the entire structure (record) and the
individual components (boolean, integer, string) of the data
type. In Pascal we declare variables to be of a particular type (record)
and then create procedures to access these typed structures.

procedure changestatus (X: supplier);

 begin

 if X.status then. …

Because it is nonprocedural, Prolog does not separate the declaration from
the use of data types, and type checking is done as the program is
executing. Consider the rule:

 Chapter 5 Meta-Linguistic Abstraction 63

supplier_name(supplier(sname(Supplier),
 snumber(Snumber),
 status(true),
 location (london))) :-

 integer(Snumber), write(Supplier).

supplier_name takes as argument an instance of the supplier
predicate and writes the name of the Supplier. However, this rule will
succeed only if the supplier’s number is an integer, the status is active
(true), and the supplier lives in london. An important part of this type
check is handled by the unification algorithm (status and
location) and the rest is the built-in system-predicate integer.
Further constraints could restrict values to be from a particular list; for
example, Snumber could be constrained to be from a list of supplier
numbers. We define constraints on database queries using rules such as
cktype and supplier_name to implement type checking when the
program is executed.

So far, we have seen three ways that data may be typed in Prolog. First,
and most powerful, is the program designer’s use of unification and
syntactic patterns to constrain variable assignment. Second, Prolog itself
provides predicates to do limited type checking. We saw this with meta-
predicates such as var(X), clause(X,Y), and integer(X). The
third use of typing occurred in the inventory example where rules checked
lists of legitimate Supplier, Pnumbers, and Cities to enforce type
constraints.

A fourth, and more radical approach is the complete predicate and data
type check proposed by Mycroft and O’Keefe (1984). Here all predicate
names are typed and given a fixed arity. Furthermore, all variable names
are themselves typed. A strength of this approach is that the constraints
on the constituent predicates and variables of the Prolog program are
themselves enforced by a (meta) Prolog program. Even though the result
may be slower program execution, the security gained through total type
enforcement may justify this cost.

To summarize, rather than providing built-in type checking as a default,
Prolog allows run-time type checking under complete programmer
control. This approach offers a number of benefits for AI programmers,
including the following:

1. The programmer is not forced to adhere to strong type
checking at all times. This allows us to write predicates that
work across any type of object. For example, the member
predicate performs general member checking, regardless of
the type of elements in the list.

2. User flexibility with typing helps exploratory programming.
Programmers can relax type checking in the early stages of
program development and introduce it to detect errors as
they come to better understand the problem.

3. AI representations seldom conform to the built-in data types
of languages such as Pascal, C++, or Java. Prolog allows

64 Part II: Programming in Prolog

types to be defined using the full power of predicate
calculus. The database example showed this flexibility.

4. Because type checking is done at run time rather than
compile time, the programmer determines when the
program should perform a check. This allows programmers
to delay type checking until it is necessary or until certain
variables have become bound.

5. Programmer control of type checking at run time also
supports the creation of programs that build and enforce
new types during execution. This can be of use in a learning
or a natural language processing program, as we see in
Chapters 7, 8, and 9.

In the next section we take a closer look at unification in Prolog. As we
noted earlier, unification is the technical name for pattern matching,
especially when applied to expressions in the Predicate Calculus. The
details for implementing this algorithm may be found in Luger (2009,
Section 2.3). In Prolog, unification is implemented with backtracking that
supports full systematic instantiation of all values defined for the problem
domain. To master the art of Prolog programming the sequential actions
of the interpreter, sometimes referred to as Prolog’s “procedural
semantics” must be fully understood.

 5.3 Introduction: Logic-Based Representatio Unification, Engine of Variable Binding and Evaluation

 An important feature of Prolog programming is the interpreter’s behavior
when considering a problem’s specification and faced with a particular
query. The query is matched with the set of specifications to see under
what constraints it might be true. The interpreter’s action, left-to-right
depth first backtracking across all specified variable bindings, is a variation
of the search of a resolution-based reasoning system.

But Prolog is NOT a full mathematically sound theorem prover, as it lacks
several important constraints, including the occurs check, and Prolog also
supports the use of cut. For details see Luger 2009, Section 14.3). The
critical point is that Prolog performs a systematic search across database
entries, rather than, as in traditional languages, a sequential evaluation of
statements and expressions. This has an important result: variables are
bound (assigned values or instantiated) by unification and not by an
evaluation process, unless, of course, an evaluation is explicitly requested.
This paradigm for programming has several implications.

The first and perhaps most important result is the relaxation of the
requirement to specify variables as input or output. We saw this power
briefly with the member predicate in Chapter 2 and will see it again with
the append predicate in Chapter 10. append can either join lists
together, test whether two lists are correctly appended, or break a list into
parts consistent with the definition of append. We use unification as a
constraint handler for parsing and generating natural language sentences in
Chapters 7 and 8.

Unification is also a powerful technique for rule-based and frame-based

 Chapter 5 Meta-Linguistic Abstraction 65

expert systems. All production systems require a form of this matching,
and it is often necessary to write a unification algorithm in languages that
don’t provide it, see, for example, Section 15.1 for a Lisp implementation
of unification.

An important difference between unification-based computing and the use
of more traditional languages is that unification performs syntactic
matches (with appropriate parameter substitutions) on structures. It does
not evaluate expressions. Suppose, for example, we wished to create a
successor predicate that succeeds if its second argument is the
arithmetic successor of its first argument. Not understanding the
unification/evaluation paradigm, we might be tempted to define
successor:

successor (X, Y) :- Y = X + 1.

This will fail because the = operator does not evaluate its arguments but
only attempts to unify the expressions on either side. This predicate
succeeds if Y unifies with the structure X + 1. Because 4 does not unify
with 3 + 1, the call successor(3, 4) fails! On the other hand,
demonstrating the power of unification, = can test for equivalence, as
defined by determining whether substitutions exist that can make any two
expressions equivalent. For example, whether:

friends (X, Y) = friends(george, kate).

In order to correctly define successor (and other related arithmetic
predicates), we need to be able to evaluate arithmetic expressions. Prolog
provides an operator, is, for just this task. is evaluates the expression on
its right-hand side and attempts to unify the result with the object on its
left. Thus:

X is Y + Z.

unifies X with the value of Y added to Z. Because it performs arithmetic
evaluation, if Y and Z do not have values (are not bound at execution
time), the evaluation of is causes a run-time error. Thus, X is Y + Z
cannot (as one might think with a declarative programming language) give
a value to Y when X and Z are bound. Therefore programs must use is to
evaluate expressions with arithmetic operators, +, –, *, /, and mod.

Finally, as in the predicate calculus, variables in Prolog may have one and
only one binding within the scope of a single expression. Once given a
value, through local assignment or unification, variables can never take on
a new value, except through backtracking in the and/or search space of
the current interpretation. Upon backtracking, all the instances of the
variable within the scope of the expression take on the new value. Thus,
is cannot function as a traditional assignment operator; and expressions
such as X is X + 1 will always fail.

Using is, we now properly define successor(X, Y) where the
second argument has a numeric value that is one more than the first:

successor (X, Y) :- Y is X + 1.

successor will now have the correct behavior as long as X is bound to
a numeric value at the time that the successor predicate is called.

66 Part II: Programming in Prolog

successor can be used either to compute Y, given X, or to test values
assigned to X and Y:

?- successor (3, X).

X = 4

Yes

?- successor (3, 4).

Yes

?- successor (4, 2).

No

?- successor (Y, 4).

failure, error in arithmetic expression

since Y is not bound at the time that successor is called.

As this discussion illustrates, Prolog does not evaluate expressions as a
default as in traditional languages such as C++ and Java. The programmer
must explicitly call for evaluation and assignment using is. Explicit
control of evaluation, as also found in Lisp, makes it easy to treat
expressions as data, passed as parameters, and creating or modifying them
as needed within the program. This feature, like the ability to manipulate
predicate calculus expressions as data and execute them using call,
greatly simplifies the development of different interpreters, such as the
expert system shell of the next chapter.

We close this discussion of the power of unification-based computing
with an example that does string catenation through the use of difference
lists. As an alternative to the standard Prolog list notation, we can
represent a list as the difference of two lists. For example, [a, b] is
equivalent to [a, b | []] – [] or [a, b, c] – [c].
This representation has certain expressive advantages over the traditional
list syntax. When the list [a, b] is represented as the difference [a, b
| Y] – Y, it actually describes the potentially infinite class of all lists
that have a and b as their first two elements. Now this representation has
an interesting property, namely addition:

X – Z = X – Y + Y – Z

We can use this property to define the following single-clause logic
program where X – Y is the first list, Y – Z is the second list, and X –
Z is the result of catenating them, as in Figure 5.1: We create the predicate
catenate that takes two list X and Y and creates Z:

catenate(X – Y, Y – Z, X – Z).

This operation joins two lists of any length in constant time by unification
on the list structures, rather than by repeated assignment based on the
length of the lists (as with append, Chapter 10). Thus, the catenate
call gives:

?- catenate ([a, b Y] – Y, [1, 2, 3] – [], W).

Y = [1, 2, 3]

W = [a, b, 1, 2, 3] – []

 Chapter 5 Meta-Linguistic Abstraction 67

Figure 5.1 Tree diagrams: list catenation using difference lists.

As may be seen in Figure 5.1, the (subtree) value of Y in the second
parameter is unified with both occurrences of Y in the first parameter of
catenate. This demonstrates the power of unification, not simply for
substituting values for variables but also for matching general structures:
all occurrences of Y take the value of the entire subtree. The example also
illustrates the advantages of an appropriate representation. Thus difference
lists represent a whole class of lists, including the desired catenation.

In this section we have discussed a number of idiosyncrasies and
advantages of Prolog’s unification-based approach to computing.
Unification is at the heart of Prolog’s declarative semantics. For a more
complete discussion of Prolog’s semantics see Luger (2009, Section 14.3).

In Chapter 6 we use Prolog’s declarative semantics and unification-based
pattern matching to design three meta-interpreters: Prolog in Prolog, the
shell for an expert system, and a planner.

68 Part II: Programming in Prolog

 Exercises

 1. Create a type check that prevents the member check predicate (that
checks whether an item is a member of a list of items) from crashing when
called on member(a, a). Will this “fix” address the append(nil,
6, 6) anomaly that is described in Chapter 9? Test it and see.

2. Create the “inventory supply” database of Section 5.2. Build type checks
for a set of six useful queries on these data tuples.

3. Is the difference list catenate really a linear time append (Chapter
10)? Explain.

4. Explore the powers of unification. Use trace to see what happens
when you query the Prolog interpreter as follows. Can you explain what is
happening?

 a: X = X + 1

 b: X is X + 1

 c: X = foo(X)

